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Abstract

A model was developed to evaluate and predict boiling heat transfer enhancement using additives. The model is

based on the molecular structures of the additives and uses artificial neural network technology. The effects of 30

additives tested by the authors and other researchers on the augmentation of boiling heat transfer were analyzed with

the model. The results show that the evaluation of all 30 additives is consistent with the experimental data, which means

that the training accuracy of the model is 100%. In addition, the boiling heat transfer enhancement with sodium oleate

and 11 other additives was also predicted, with a prediction accuracy of over 90% since the calculated results for 10 of

the 11 additives were in agreement with the experimental results.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Enhancement of boiling heat transfer with additives

has been studied for many years [1,2]. The boiling heat

transfer of working fluids, such as water and Freon, can

be significantly improved if suitable trace amounts of

additives are added into the fluids [3,4]. This technique

is specially useful for a mixed working fluid to replace

chlorofluorocarbons since such mixed fluids usually

have much lower boiling heat transfer coefficients than

pure liquids. Therefore, suitable additives are needed to

enhance the boiling heat transfer of these working fluids.

More than 40 additives have been tested to date [3,5],

though their effects on boiling heat transfer are quite

different because of their various molecular structures.

Many other substances may also be used as additives, but

it is difficult to test all possibilities one by one. Moreover,

the effect of a certain additive on the boiling heat transfer

cannot be predicted accurately by commonmathematical

models since the enhancement mechanism for these ad-

ditives is not well understood. Therefore, a comprehen-

sive evaluation and prediction model is needed for

boiling heat transfer enhancement with additives which

accounts for their molecular structural characteristics.

Artificial neural networks can effectively analyze

strong non-linear problems with stochastic characteris-

tics. Neural networks have been successfully applied to

many areas such as electronics, information and control.

A comprehensive evaluation model based on the neural

network back propagation (BP) technique was used in

this study to evaluate and predict the performance of an

additive used to enhance boiling heat transfer as a

function of its molecular structure.

2. Back propagation model

2.1. Network input and output

The purpose of the model is to evaluate and predict

the boiling heat transfer enhancement due to an additive
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based on its molecular structure. The evaluation object

which is the network output, therefore, was then the

enhancement due to the additive. Here, the relative in-

crease in the boiling heat flux at the same temperature

difference with the additives was used as the output:

T ¼ ðqA � qÞ=q

The network input was the parameters describing the

molecular characteristics of the additive. Since all the

additives consist of polar and non-polar groups and they

can be divided into anionic, cationic or non-ionic types,

the following four factors were chosen as the inputs to

the network to represent the molecular structures of the

additives:

P1: number of carbon atoms inside the straight carbon
chain in the non-polar group or the molecular

weight for polymer additives.

P2: ratio between the atomic weight of the non-polar
group and that for the polar group.

P3: type of additive, anionic, cationic or non-ionic.
P4: kind of polar group in the additive.

Forty-one additives were selected from the literature

as samples for evaluation and prediction. Their molec-

ular structures and their effect on the boiling heat

transfer as well as their corresponding network input

data are summarized in Table 1.

2.2. Back propagation network structure

A BP neural network with two hidden layers was

used in this model. The network structure is shown in

Fig. 1. There were four mesh points in the input layer

since four factors were used to express the molecular

characteristics of each additive. The number of neurons

in the first and second hidden layers was assumed to be j

and k, respectively. Their final values were determined

after the network training. Additionally, S hyperbolic

tangent activation function was applied to the first

hidden layer with S logarithmic activation function ap-

plied to the second hidden layer, with a linear activation

function used for the output layer. The detailed calcu-

lational process is described later.

2.3. Range division and quantification

The complex structures of the additives were ex-

pressed quantitatively so they could be input to the

network. The inputs P1, P2 and P4 were divided into five
subgroups while P3 was divided into three subgroups. In
addition, the increased boiling heat transfer heat flux

due to the additive was not a fixed number, but varied

over a certain range. Hence, the network output was

also divided into subgroups. The divisions and their

corresponding quantified values are summarized in

Table 2.

For each additive in Table 1, the subgroups and

corresponding values for its input were determined from

Table 2 according to its molecular structure. The net-

work output was then a result of the training as ex-

plained later. The boiling heat transfer enhancement

relative to its output value was then found from Table 2.

2.4. Training of the back propagation neural network

Matlab was used to define the BP neural network.

The calculational process included two parts, network

training and network simulation. Three Matlab func-

tions were used in the calculation:

(1) Network initialization, initff:

½w1; b1;w2; b2;w3; b3�
¼ initffðp; j; ‘tansig0; k; ‘logsig0; t; ‘purelin0Þ

where the parameters are

wi calculated initial weight matrix for the ith layer

bi calculated initial bias vector for the ith layer

Nomenclature

A output matrix of the first hidden layer

b bias matrix of the neural network

B output matrix of the second hidden layer

i number of samples

j number of neurons inside the first hidden

layer

k number of neurons inside the second hidden

layer

M molecular weight of the polymer additives

Nc number of carbon atoms inside the straight

carbon chain in the non-polar group

P input matrix representing the characteris-

tics of the molecular structures of the addi-

tives

q heat flux without additives, W/m2

qA heat flux with additives, W/m2

R ratio of the atomic weight for the non-polar

group and that for the polar group

T output of the neural network

W weight matrix for the network
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Table 1

Structural characteristics of additives and their boiling heat transfer enhancement

No Additive name Structural formula P1 P2 P3 P4 T Reference

Experi-

ment

Calcula-

tion

1 Acrylamide 2 0.61 Non-ion <0 6 0 [6]

2 Polyacrylamide 1000th 0.61 Non-ion 1 � 1:4 1 � 3 [6]

3 Polyacrylamide 2000th 0:5 � 0:8 0:5 � 1

4 Hydroxyethyl

cellulose L

70th 1.21 Non-ion –OH, –O– 0:5 � 1 0:5 � 1 [6]

5 Hydroxyethyl

cellulose M

100th 1 0:5 � 1

6 Hydroxyethyl

cellulose H

200th 1 � 1:6 1 � 3

7 Aerosol 18 1.2 Anion

,

–COO�, –SO�
3

2.5 1 � 3 [7]

8 Ethanol CH3–CH2–OH 2 1.7 Non-ion –OH <0 6 0 [8]

9 Sodium lauryl

benzene sulfo-

nate

12 3.06 Anion –SO�
3 0.5 0 � 0:5 [9]

10 Octadecylamine 18 15.8 Non-ion –NH2– 2.5 1 � 3 [10,11]

11 Polyoxyethylene 2000th 1.75 Non-ion –O– 1 0:5 � 1 [12]

12 Separan 2500th 0.61 Anion –COO�, 0.5 05 � 1 [12]

Note: Additives 13–41 are listed in Liu [3] and Wu et al. [4].
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p matrix of input vectors

j, k number of neurons in the first and second

layers

t matrix of output vectors

‘tansig’: hyperbolic tangent activation function

f ðw1 	 p þ b1Þ ¼
1� exp½�2ðw1 	 p þ b1Þ�
1þ exp½�2ðw1 	 p þ b1Þ�

‘logsig’: logarithmic activation function

f ðw2 	 A0 þ b2Þ ¼
1

1þ exp½�ðw2 	 Aþ b2Þ�

‘purelin’: linear activation function

f ðw3 	 Bþ b3Þ ¼ w3 	 Bþ b3

(2) Network training, trainbp:

½w1; b1;w2; b2;w3; b3; epoche; error�
¼ trainbpðw1; b1; ‘tansig0;w2; b2; ‘logsig0;

w3; b3; ‘purelin
0; p; t;TPÞ

where the parameters represent wi on the left hand side:

new calculated weight matrix for the ith layer, wi on the

right hand side: initial weight matrix for the ith layer, bi
on the left hand side: new calculated bias vector for the

ith layer, bi on the right hand side: initial bias vector for
the ith layer, epoche: number of epochs in the training

period, error: training errors.

TP, training parameters, which include TP(1): epochs

between display updates, 3000 in this calculation; TP(2):

maximum number of training epochs, 30 000 in this

calculation; TP(3): sum-squared error goal, 0.001 in this

calculation; TP(4): learning rate, 0.01 in this calculation.

(3) Network simulation, simuff:

t1 ¼ simuffðp;w1; b1; ‘tansig0;w2; b2; ‘logsig0;
w3; b3; ‘purelin

0Þ

here t1 is the calculated matrix of target vectors.
The first 30 additives in Table 1 were used as the

training samples with the remaining 11 additives used as

the prediction samples. The training and prediction

calculations were carried out with the number of neu-

rons in the first and second hidden layers, j and k, varied

from 1 to 14. The optimum numbers of neurons in the

first and second hidden layers were found to be 6 and 3,

which minimized the error between the experimental and

calculational results.

In addition to the suitable numbers of neurons in

the first and second hidden layers, the corresponding

weights and biases for the networks were also obtained

as:

w1 ¼

0:52 1:68 �0:79 0:82

4:51 1:56 0:73 �2:73
�1:47 0:15 0:86 3:17

�1:54 2:19 �2:60 3:11

�0:25 0:38 �0:70 2:13

2:29 �0:08 0:77 0:07

2
66666666664

3
77777777775

b1 ¼

1:42

�0:19
�2:34
0:20

1:47

�2:36

2
666666664

3
777777775

Fig. 1. BP neural network structure.
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Table 2

Subgroups and quantification of network input and output

Sub-

group

T P1 P2 P3 P4

Value range Mapping

range

Value range Value Value range Value Type Value Type Value

1 Y 6 0 [0; 0:2) 0 < Nc6 10 0 0 < R6 1 0 Anion 0 –COO� 0

–SO�
4

2 0 < Y 6 0:5 [0:2; 0:4) 10 < Nc 0.25 1 < R6 1:5 0.25 Cation 0.5 –NH2 0.25

3 0:5 < Y 6 1 [0:4; 0:6) 0 < M 6 5	 104,
2:5	 106 < M

0.5 1:5 < R6 2 0.5 Non-ion 1 0.5

–O–

4 1 < Y 6 3 [0:6; 0:8) 5	 104 < M 6 1	 105,
1:5	 106 < M 6 2:5	 106

0.75 2 < R6 3 0.75 – –SO�
3 0.75

5 3 < Y [0:8; 1] 1	 105 < M 6 1:5	 106 1 3 < R 1 – 1

–OH

–COOH
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w2 ¼

0:08 �1:82 2:12 �1:13 �0:64 0:62

�0:36 �1:64 �2:42 �2:59 0:86 �3:08

�2:12 3:62 �1:08 3:14 �1:59 1:65

2
664

3
775

b2 ¼

2:57

2:92

1:18

2
664

3
775

w3 ¼ 0:63 1:62 1:39½ �
b3 ¼ �2:05

The predicted results then used these weights and

biases as described by Li [13].

3. Results and discussion

The predicted heat transfer enhancements of the first

30 additives in Table 1 are compared with experimental

data in Table 1. The results show that the predicted

enhancements for all 30 additives are in agreement with

the experimental results, which proves that the model is

reliable because its training accuracy is 100%, as shown

in Fig. 2. In addition, the boiling heat transfer en-

hancement using sodium oleate and 11 other additives

was predicted with this model. The results in Fig. 3 show

that the predictions for 10 of the additives are consistent

with the experimental data. Thus the BP neural network

model can be used to predict the effectiveness of an

additive for boiling enhancement since the prediction

accuracy of the model is over 90%.

Analysis of all the materials listed in Table 1 shows

that: (1) The function of an additive mainly depends on

input factors P4 and P1, which represent the kind of
polar group in the additive and the number of carbon

atoms in the non-polar group or the polymer molecular

weight. (2) There was usually no obvious effect on the

boiling heat transfer for additives with less than 10

carbon atoms in their non-polar group, or whose mo-

lecular weights were very small or very large (smaller

than 50	 104 or greater than 2:5	 106). (3) The addi-
tives having the best effect on the boiling heat transfer

included the polar groups –COO�, –SO�
4 , –NH2 or

–CO–NH–. (4) Additives with more than 10 carbon

atoms or with suitable molecular weights (105 < M 6

1:5	 106) and with one of these polar groups will sub-
stantially enhance the boiling heat transfer rate.

4. Conclusions

A BP neural network model was developed to eval-

uate the boiling heat transfer enhancement due to ad-

ditives. The model is based on the molecular structures

of the additives. The model training accuracy was 100%

and its prediction accuracy was over 90%, so the model

is reliable. The effect of each additive on the boiling heat

transfer enhancement can be predicted by the model.

Therefore, the model can be used to select proper ad-

ditives for working fluids. Analysis of the data also

showed that the molecular weights of the additives and

their polar groups had the greatest effect on the en-

hancement.
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